Paper (Science Advances, 2020): https://doi.org/10.1126/sciadv.aaz1708
https://twitter.com/KABrownLab/status/1248674067449876487/photo/1
While additive manufacturing (AM) has facilitated the production of complex structures, it has also highlighted the immense challenge inherent in identifying the optimum AM structure for a given application. Numerical methods are important tools for optimization, but experiment remains the gold standard for studying nonlinear, but critical, mechanical properties such as toughness. To address the vastness of AM design space and the need for experiment, we develop a Bayesian experimental autonomous researcher (BEAR) that combines Bayesian optimization and high-throughput automated experimentation. In addition to rapidly performing experiments, the BEAR leverages iterative experimentation by selecting experiments based on all available results. Using the BEAR, we explore the toughness of a parametric family of structures and observe an almost 60-fold reduction in the number of experiments needed to identify high-performing structures relative to a grid-based search. These results show the value of machine learning in experimental fields where data are sparse.
(A) Experimental system composed of (i) five dual extruder fused deposition modeling (FDM) printers (M3, MakerGear), (ii) a six-axis robotic arm (UR5e, Universal Robotics), (iii) a scale (CP225D, Sartorius), and (iv) a universal testing machine (5965, Instron Inc.). (Photo credit: Aldair E. Gongora and Bowen Xu, Boston University). (B) Model “crossed barrel” family of parametric structures with two circular platforms that are held apart by a series of n hollow columns of outer radius r and thickness t and that are twisted with an angle θ. Force F and corresponding displacement D from the testing of (C) a crossed barrel that did not yield before ~5 kN (designated too strong), (D) a crossed barrel that failed in a brittle manner (designated “brittle”), and (E) a crossed barrel that exhibited appreciable strength after an initial yield point (designated “ductile”).